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Abstract—In this paper we focus on realistic clustering prob-
lems where the input data is high-dimensional and the clusters
have complex, multimodal distribution. In this challenging
setting the conventional methods, such as k-centers family,
hierarchical clustering or those based on model fitting, are
inefficient and typically converge far from the globally optimal
solution. As an alternative, we propose a novel unsupervised
learning approach which is based on the compressive sens-
ing paradigm. The key idea underlying our algorithm is to
monitor the distance between the test sample and its principal
projection in each cluster, and continue re-assigning it to the
cluster yielding the smallest residual. As a result, we obtain an
iterative procedure which, under the compressive assumptions,
minimizes the total reconstruction error of all samples from
their nearest clusters. To evaluate the proposed approach, we
have conducted a series of experiments involving various image
collections where the task was to automatically group similar
objects. Comparison of the obtained results with those yielded
by the state-of-the-art clustering methods provides evidence for
high discriminative power of our algorithm.
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I. INTRODUCTION

There exist many robust clustering algorithms that per-
form well on data exhibiting intrinsic grouping in the feature
space. To this sort of data one can apply basic methods, such
as connectivity-based algorithms [1], [2] or Lloyd’s k-means
[3], as long as cluster distributions are fairly regular and a
simple analytical distance metric can be adopted. This ideal-
ized scenario is yet far from what we observe when tackling
real-life problems: large number of groups, their irregular
distributions and overlap, or presence of outliers. These
factors usually make the above algorithms fail, especially
for attribute-rich data, which renders particular distance
functions indiscriminative in high-dimensional spaces.

To overcome early methods’ limitations, different strate-
gies for clustering were proposed. The most elegant ap-
proach treats clusters as grouping objects that belong most
likely to the same distribution. This allows to produce
complex statistical models of clusters and capture correla-
tions of attributes in parallel. A whole family of generative
methods emerged from this concept, including popular finite
mixture models [4], [5]. They are usually trained using some
variant of Expectation-Maximization algorithm (EM) [6] or
Bayesian framework. The drawback of the above methods
is that they put on the human the extra burden of choosing

and optimizing a model which is inherently difficult as more
complex models will usually explain the data better.

In density-based methods clusters are defined as areas
of higher density than the remainder of the dataset. A
good representative of this family is DBSCAN [7] and its
numerous extensions. They are based on connecting points
within certain distance thresholds as long as they satisfy
some additional density criterion. The mean-shift clustering
algorithm [8], also falling into this group, treats data points
as drawn from an unknown distribution and attempts to
iteratively find the nearest stationary point of the underlying
density function. Density-based methods are generally ro-
bust, but typically require significant density drop to detect
clusters and are hard to apply to high-dimensional data.

Another thread of research on clustering focused on tack-
ling the curse of dimensionality which is a serious problem
when attribute-rich data, e.g. multimedia, are involved. The
corresponding methods attempt to identify only the relevant
attributes to be included in the cluster models or look for
arbitrarily rotated subspace clusters that can be modeled by
giving a correlation of their attributes. Examples for such
clustering algorithms are CLIQUE [9] and SUBCLU [10].
Automatic feature extraction methods for distribution-based
clustering have also been proposed, e.g. in [11].

In recent years compressive sensing (CS) [12], [13] has
attracted attention as a robust data compression method
by which one can effectively represent in low-dimensional
spaces high-dimensional signals sampled at sub-Nyquist fre-
quencies. It holds on condition that the signal can be sparsely
represented in a given basis. Wright et al. [14] employed
CS to cope with pattern classification tasks by composing
the sparsity basis of labeled training examples. If classes
are sufficiently distinguishable, then the novel example will
appear much closer to its linear projection onto the subspace
spanned only by the training examples representing its true
class than to its projection onto the subspace spanned by
any other class. Chi and Porikli [15] extended the idea from
[14] by combining the sparse representation based classifier
with a classifier exploiting also the inter-class information
encoded in the collaborative representation formed by all (as
opposed to class-specific) training examples.

In this work we follow the intuition of Wright et al.
in an unsupervised learning setting. The key idea of our
novel algorithm is to operate on each high-dimensional data
vector through its compressive, low-dimensional projection



onto a basis spanned by a subset of all other vectors from
the dataset being explored. The nearest subspace for this
vector should then correspond to the subset of points most
similar to it. In other words, we rephrase the aforementioned
assertion by stating that, under the compressive assumptions,
a given vector should on average appear closer to its linear
projection onto the subspace spanned by its true cluster than
to its projection onto a subspace spanned by any other com-
bination of vectors. This translates into an elegant residual
minimization problem which we solve through an iterative
coordinate descent algorithm [16]. This facilitates efficient
data clustering which is demonstrated in the experiments
involving various image collections.

The rest of this paper is composed as follows. In Section II
the idea of compressive clustering, its theoretical foundations
and implementation are discussed. In Section III we present
a comparative evaluation of the proposed approach. Finally,
in Section IV conclusions of the paper are drawn.

II. COMPRESSIVE CLUSTERING

In this chapter we first describe the way data points are
sparsely represented. Then, the clustering task is posed as a
residual minimization problem where the aim is to find the
point-to-cluster assignment leading to possibly the smallest
total error of reconstructing points from their clusters. After-
wards, an iterative algorithm solving the above problem is
presented and its key implementation aspects are discussed.

A. Data Representation

Assume there are K distinct groups in the data containing
N objects and further let xi ∈ RM denote a feature vector
describing the i-th object that needs to be assigned into one
of these groups. Each such vector can be thought of as a
superposition of all remaining vectors given a linear model:

xi = Ψxiα , (1)

where Ψxi is an M × (N − 1) matrix built from stacked
vectors xj , j ̸= i. We assume that vectors representing ob-
jects within the same group lie in the same low-dimensional
linear subspace. Therefore, provided N is reasonably large,
we expect each vector xi to have sparse representation under
its basis Ψxi . In other words, we seek a sparse vector
α = [α1, . . . , αi−1, αi+1, . . . , αN ]. It is done by solving an
ℓ1-regularized least-squares regression problem [13]:

α∗ = arg min
α

{∥Φxi −ΦΨxiα∥2ℓ2 + λ∥α∥ℓ1} , (2)

where Φ ∈ RD×M is a random Gaussian matrix, D < M ,
and λ is the regularization constant. D is chosen to satisfy:

D = ⌈βT logN⌉ , (3)

where T is the estimate of the number of non-zero weights
in α and β is a constant set experimentally.

The matrix Φ is used for dimensionality reduction. It is
motivated by the compressive sensing theory [12] which

states that the sparse pattern of a signal can be recovered
from the heavily compressed, low-dimensional measure-
ments, incoherent in the Ψxi domain. Although (if M > N )
sparse α can be found by employing a conventional regu-
larized least-squares approach, without signal compression,
it often leads to overfitting due to noise and the insufficient
number of measurements.

B. Residual Minimization Problem

With the above in mind, the goal of clustering is to find an
optimal set of sparsity bases for each data point such that the
sum of their reconstruction errors is minimized. For a given
cluster membership function c : RM → {1, . . . ,K} and a
given vector xi the best cluster assignment update can be
found by checking how well this vector gets reconstructed
based on the found sparse vector α∗ with set to zero all
coefficients not corresponding to the basis vectors belonging
to each j-th cluster. This way K signals are reconstructed:

υj(xi) = Ψxiα
∗
j , (4)

where α∗
j denotes a vector of sparse coefficients with atten-

uated components outside the j-th cluster, and the cluster
membership of xi is found by minimizing the residual:

c∗(xi) = arg min
j=1,...,K

rj(xi) = arg min
j=1,...,K

{∥xi−υj(xi)∥2}. (5)

The result of the minimization in (5) depends on the
current cluster contents, which can be quite random early
in the process. Also, it only guarantees reduction of indi-
vidual points’ reconstruction errors, without ensuring global
consistency of the resulting data partitioning. For effective
search of the optimal solution to the problem, we formulate
it as an optimization task with the following cost function:

E∗ = min
υ

min
c∈C

K∑
j=1

∑
i:c(xi)=j

∥xi − υj(xi)∥2 , (6)

where minimization over υ means searching the space of
all possible zero weight assignments to the components of
vector α∗ for all data points and C is the space of all possible
subdivisions of the input data into K clusters.

In Section II-C we present the algorithm used to solve
the above problem and show its convergence. Its specific
implementation issues are discussed in Section II-D.

C. Coordinate Descent Algorithm

To solve the residual minimization problem stated in
the previous section, we propose an iterative procedure
in principle similar to the popular Lloyd’s algorithm, also
known as Voronoi relaxation [3].

Note that the cost function in (6) depends on two param-
eters: υ and c. As the function itself is bounded, joint min-
imization over both parameters can be done by alternately
fixing value of the first parameter and minimization over the
second and fixing value of the second while minimizing the
first. This scheme is known as coordinate descent and it is



proven to converge when the cost function is smooth [16].
Specifically, we first fix the point-specific subspaces encoded
in υ and optimize c through linear search. We call it a re-
assignment step. Subsequently, the newly found partitioning
ĉ is fixed, which yields:

min
υ

K∑
j=1

∑
i:ĉ(xi)=j

∥xi − υj(xi)∥2 =

K∑
j=1

min
υ

∑
i:ĉ(xi)=j

∥xi − υj(xi)∥2
. (7)

Finding minima in the outer sum of (7) means applying
equation (5) to all data points. As in each re-assignment
step clusters become more consistent, in an ideal case of
non-overlapping clusters the basis vectors that belong to one
selected cluster gain predominant contribution to a given
point’s residual. Therefore, attenuating coefficients of basis
vectors not belonging to this cluster is guaranteed to reduce
(7), which was shown in [14] in the supervised learning con-
text. However, noise and modeling errors will lead to small
non-zero entries associated with multiple clusters which for
difficult datasets may produce sub-optimal clustering results,
just as for k-means and most other algorithms.

The proposed iterative optimization scheme can be sum-
marized in the pseudocode shown in Algorithm 1. Assuming
K is given, it starts by partitioning the input dataset into K
subsets. Then, it iterates over all data vectors and for each
it finds the cluster defining the nearest subspace according
to (5) and computes this vector’s contribution to the total
residual. This is followed by re-assignment of the input
vectors to their best found clusters which in turn triggers
the new nearest subspace search. The algorithm is repeated
by alternate application of these two steps until convergence.

Algorithm 1 Implementation of the proposed compressive
clustering algorithm.
input: Dataset X = {xi : xi ∈ RM}, K - the number of clusters
output: Optimal partitioning of data into clusters c∗

1: Initialize clusters c(0) and calculate total residual E(0)

2: Set Emin = E(0),i = 1
3: while not converged do
4: For each vector find its best cluster for re-assignment
5: Re-assign vectors to their found best clusters, producing c(i)

6: Determine nearest subspaces and calculate total residual E(i)

7: if c(i) ≡ c(i−1) do Set convergence flag end if
8: Set i = i+ 1

9: end while
10: c∗ ← c(i−1)

D. Implementation Issues
Several aspects of the proposed compressive clustering

scheme require clarification. First, any cluster initialization
method can be used, e.g. random one. Output of k-means or
any other conventional algorithm is another possible option.
However, care should be taken not to set the initial cluster
membership too close to a strong local minimum of (6).

Selection of the optimal number of clusters is generally
not focused on in this study. We assume that K is known
in advance or can simply be determined by restarting the
algorithm for each plausible K and picking the value that
minimizes the total residual. It is worth noting that our
method is scalable as it can easily handle data composed of
many subgroups, e.g. large unlabeled face image collections.

Regarding step 4 in Algorithm 1, the search is conducted
by temporarily moving each point to each cluster other than
its current cluster and recording the moves that yield the
largest drop in the total residual over the entire dataset. This
strategy offers fast convergence. However, to prevent arti-
facts, such as empty clusters, extra constraints are imposed.
First, the minimum number of data points per cluster, smin,
is enforced. Secondly, the residual ∥xi−υj(xi)∥2 increases
with the number of non-zero coefficients in α∗

j (i.e. with
cluster size). We compensate for this when assembling basis
Ψxi in (4) by sampling m = smin points several times from
each cluster, regardless of its size, and averaging the residual
under Ψxi . Therefore, basis for vector xi becomes:

Ψxi = [x
(1)
1 , . . . ,x(1)

m , . . . ,x
(K)
1 , . . . ,x(K)

m ] , (8)

where x
(k)
j denotes j-th vector in the k-th cluster’s sample.

It should be noted that compressive projections and recon-
structions are more expensive than operations performed in
most other clustering approaches, e.g. distance computations
in centroid-based methods. However, thanks to introducing
constant-size samples for sparsity basis construction, data
compression via ℓ1-regularized least-squares regression in
(2) can be done only once, prior to the main loop. It requires
generating a number of random measurement matrices Φ in
advance and pre-multiplying them by the basis vectors xi.
As point re-assignments and nearest subspace determination
involve only relatively cheap residual computations, this
dramatically reduces the overall algorithm’s execution time
at the cost of extra memory requirement.

III. NUMERICAL RESULTS

The proposed compressive clustering algorithm was evalu-
ated through automatic detection of groups of similar objects
within four image datasets. Below a brief description of
these datasets and the test procedure is given. In Section
III-B the obtained clustering results are discussed and com-
pared to those produced using conventional methods.

A. Datasets and Experimental Setup

Four image datasets were used in our experiments 1:
• MPEG-7 shapes - Subset of the MPEG-7 dataset contain-
ing various object silhouettes. 10 most consistently looking
objects were selected for clustering, each represented by

1Datasets can be downloaded from: http://www.dabi.temple.edu/∼shape/
MPEG7/MPEG7dataset.zip (MPEG-7), http://yann.lecun.com/exdb/mnist/
(MNIST), http://aruta.pl/research/cs/datasets/cars (Cars), and http://vision.
ucsd.edu/extyaleb/CroppedYaleBZip/CroppedYale.zip (Ext. Yale Faces).



Dataset Num. of
classes

Images
per class

Basis vectors
per class

Input
dim.

Working
dim.

MPEG-7 10 17 8 680 21
MNIST 10 50 20 816 125
Car fronts 12 25 10 2728 115
Car rears 12 25 10 2728 115
Faces 38 15 10 680 153

Table I
EXPERIMENTAL SETUP PARAMETERS WITH RESPECT TO EACH DATASET.

17-20 images scaled to 32×32 px. This easy dataset fea-
tures limited intra-class and fairly high inter-class variance.

• MNIST - Large database of handwritten digits from
which we took random 10,000 samples, each represented
by a 28×28 px gray-scale image. Due to writing style
differences, this dataset features high intra-class variance.

• Cars - Set of 720 well-aligned views of 12 car models,
360 frontal and 360 rear. For a given viewpoint each model
is represented by 30 200×100 px images. Small camera’s
pan and tilt variations were allowed when the pictures were
taken. The cars representing the same model differ in terms
of body color and general scene illumination.

• Extended Yale Faces - Database of 168×192 px aligned
face images of 38 subjects, split by pose. In our experi-
ments only frontal face images were used, giving 65 images
per subject. Different views of the same person exhibit
minor facial expression and severe illumination variations.

All images were represented by pyramid Histograms of
Oriented Gradients (pHOGs) [17] computed in quad-tree like
fashion at first 3-4 levels and flattened into a long 1-D vector.

Each dataset was sampled to keep the input to clusterer
of limited size. For each sampling repetition clustering was
restarted 10 times with random/k-means initialization and
the performance over all restarts was averaged. The number
of images representing each class in the data was kept
constant per dataset. The sample size for sparsity basis
construction was computed from (3) assuming T = smin.
Table I summarizes the experimental setup parameters.

For results validation we compared data partitioning ob-
tained with our algorithm to the gold standard encoded by
class labels y known in advance for each data point, but so
far unused. The cluster consistency measure adopted here is
based on error matrix – an analogue of confusion matrix, but
with decorrelated cluster identifiers along rows and columns.
Specifically, for each discovered cluster its intersection with
each true class is computed and the maximum intersection
is determined. Maxima are then summed and normalized
which gives the following cluster quality score:

q(c) =
1

K

K∑
j=1

max
k=1,...,K

|Ij,k| , (9)

where Ij,k = {xi : c(xi) = j ∧ y(xi) = k}. Note that this
approach is in principle different from those that evaluate the
obtained clusters based on the data being clustered itself.

Our approach has also been compared to three well-
established clustering schemes: k-means, the agglomerative

algorithm in three best configurations of linkage type and
distance function, and Gaussian Mixture. In addition, the
first two methods were tested separately in the original
feature space and in low-dimensional space obtained via
PCA such that the dimensionality matched that used in
compressive clustering (see Tab. II in Section III-B). For
GMM we fixed the dimensionality to 20 to avoid numerical
problems in the EM algorithm.

B. Discussion of the Results

Table II presents intersections of the cluster sets produced
by each tested algorithm with ground truth data partitioning.
In addition, Figure 1 illustrates the contents of sample
clusters found by our algorithm against the contents of the
corresponding clusters (with respect to the dominant class)
produced by the best alternative method and the ground
truth. Class label consistency discrepancies are apparent.

As seen, clusters induced by the proposed algorithm
reflect true object categories better than those found using
the other methods. However, for the MPEG-7 dataset it
holds only when the compressive clusterer is chained with
k-means for better initialization. Although the ground truth
intersections obtained with our method still seem small
for more challenging datasets, it should be noted that the
clusters it produces group objects representing on average
fewer classes. It is illustrated in Figure 1 and in the sample
error matrices from Figure 2 which should be interpreted
as: the less dense output (or fewer gray cells in it), the
more accurate clustering. This observation suggests that the
proposed compressive clustering algorithm is best suited for
tasks where external evaluation is the most natural way of
assessing how well the internal data structure was captured.

For the last three datasets the clustering schemes based
on distance computation expectedly seem to bias towards
inter- rather than intra-class commonalities. This is seen for
instance in the cluster of “four” digit images in Figure 1
where bias is towards slanting handwriting style.

IV. CONCLUSIONS

In this paper we proposed a novel approach to high-
dimensional data clustering, suitable for discovering irregu-
larly distributed object categories. The algorithm is posed as
an iterative approximation to the solution of an optimization
problem and is based on the compressed sensing paradigm.
The goal is to assign each data point to a subset of the
remaining points such that the projections of all points
onto their resulting linear subspaces jointly minimize the
information loss.

Our algorithm was tested against several pre-labeled im-
age collections of varying difficulty with respect to class
distributions (from fairly regular to multimodal) and overlap
(from clearly separable to highly overlapping). In all cases
it showed its ability to capture semantic categories in data
more accurately than the conventional methods while using



Dataset
k-means Ward linkage /

Euclidean dist.
Weighted linkage /

cosine dist.
Average linkage /

Spearman dist.
GMM Compressive clustering

full dim. low dim. full dim. low dim. full dim. low dim. full dim. low dim. dim = 20 random init. k-means init.
MPEG-7 0.847 0.838 0.859 0.857 0.738 0.918 0.875 0.826 0.741 0.838 0.962
MNIST 0.430 0.464 0.460 0.432 0.362 0.424 0.360 0.501 0.486 0.533 0.504
Car fronts 0.375 0.380 0.347 0.350 0.327 0.340 0.353 0.640 0.431 0.773 0.514
Car rears 0.345 0.368 0.347 0.397 0.253 0.313 0.607 0.673 0.433 0.765 0.539
Faces 0.167 0.175 0.179 0.191 0.135 0.218 0.137 0.366 0.191 0.374 N/A

Table II
CONSISTENCY OF THE OBTAINED CLUSTERS WITH THE GROUND TRUTH CLASS LABELS FOR DIFFERENT ALGORITHMS TESTED ON OUR DATASETS.

BEST QUALITY SCORES FOR EACH DATASET ARE HIGHLIGHTED.

Figure 1. Contents of two sample clusters discovered in the car fronts and MNIST datasets by the compressive algorithm (left column), the corresponding
clusters yielded by the algorithm found best among all tested alternative methods for these datasets (center column), and the ground truth (right column).
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Figure 2. Sample error matrices showing consistency of the clusters discovered in the car rears (left) and Extended Yale Faces (right) datasets with ground
truth class labels. The left matrix in either pair is the output of k-means algorithm and the right matrix in either pair was produced by our algorithm.

only a fraction of original information. In the same time it
proved to be more invariant to inter-category commonalities.

REFERENCES

[1] R. Sibson, “SLINK: An optimally efficient algorithm for the
single-link cluster method,” The Computer Journal, vol. 16,
no. 1, pp. 30–34, 1973.

[2] D. Defays, “An efficient algorithm for a complete link
method,” The Computer Journal, vol. 24, no. 4, pp. 364–366,
1977.

[3] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans.
on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[4] M. Figueiredo and A. Jain, “Unsupervised learning of finite
mixture models,” IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, vol. 24, no. 3, pp. 381–396, 2002.

[5] N. Bouguila and D. Ziou, “High-dimensional unsupervised
selection and estimation of a finite generalized Dirichlet
mixture model based on minimum message length,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 29,
no. 10, pp. 1716–1731, 2007.

[6] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the
Royal Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[7] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases
with noise,” in Proc. of the 2nd Int. Conf. on Knowledge
Discovery and Data Mining, 1996, pp. 226–231.

[8] D. Comaniciu and P. Meer, “Mean-shift: A robust approach
toward feature space analysis,” IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619,
2002.

[9] R. Agraval, J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic subspace clustering of high dimensional data,”
Data Mining and Knowledge Discovery, vol. 11, no. 1, pp.
5–33, 2005.

[10] K. Kailing, H.-P. Kriegel, and P. Krger, “Density-connected
subspace clustering for high-dimensional data,” in Proc. of
SIAM Int. Conf. on Data Mining, 2004, pp. 246–257.

[11] S. Boutemedjet, N. Bouguila, and D. Ziou, “A hybrid fea-
ture extraction selection approach for high-dimensional non-
Gaussian data clustering,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 31, no. 8, pp. 1429–1443,
2009.

[12] D. Donoho, “Compressed sensing,” IEEE Trans. on Informa-
tion Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[13] E. Candés, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete
frequency information,” IEEE Trans. on Information Theory,
vol. 52, no. 2, pp. 489–509, 2006.

[14] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp.
210–227, 2009.

[15] Y. Chi and F. Porikli, “Connecting the dots in multi-class
classification: From nearest subspace to collaborative repre-
sentation,” in Proc. of the 25th Int. Conf. on Computer Vision
and Pattern Recognition, 2012, pp. 1–8.

[16] Z. Luo and P. Tseng, “On the convergence of the coordinate
descent method for convex differentiable minimization,” Jour-
nal of Optimization Theory and Applications, vol. 72, no. 1,
pp. 7–35, 1992.

[17] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. of the 18th Int. Conf. on Computer
Vision and Pattern Recognition, 2005, pp. 886–893.


